Molecular dynamics simulations of peptide fragments from hen lysozyme: insight into non-native protein conformations.

نویسندگان

  • L J Smith
  • A E Mark
  • C M Dobson
  • W F van Gunsteren
چکیده

Molecular dynamics simulations of four peptides taken from the hen lysozyme sequence have been used to generate models for non-native protein conformations. Comparisons between the different peptides and with experimental data for denatured lysozyme and peptide fragments provides insight into the characteristics of the conformational ensembles populated in these non-native states and the dependence of their structural features on the amino acid sequence. For the denatured conformers populated local contacts dominate in determining the properties observed in the trajectories, all four peptides showing similar characteristics. These include a significant increase in the number of main-chain O(i)-NH(i+2) hydrogen bonds and hydrogen bonds involving side-chain groups, this increase compensating to a large extent for the loss of hydrogen bonds involved in helical or beta-sheet secondary structure in the native fold, and the generation of a population of collapsed states with local clusterings of hydrophobic groups. The hydrophobic clusters enable at least partial burial of many side-chains exposed by the loss of tertiary contacts on denaturation and provide models that may explain the experimentally observed protection of amides from hydrogen exchange and the existence of residual secondary structure in non-native species of lysozyme. The results suggest that this approach has an important role to play in aiding the interpretation of experimental data for conformationally disordered non-native states of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Peptide Structures in Native Proteins from Physical Simulations of Fragments

It has long been proposed that much of the information encoding how a protein folds is contained locally in the peptide chain. Here we present a large-scale simulation study designed to examine the extent to which conformations of peptide fragments in water predict native conformations in proteins. We perform replica exchange molecular dynamics (REMD) simulations of 872 8-mer, 12-mer, and 16-me...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

Molecular dynamics simulations to determine the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme.

In this study, various molecular dynamics simulations were conducted to investigate the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme. The analyses of backbone root-mean-square deviation, radius of gyration, and secondary structure stability all show that supercritical CO(2) exhibits the ability to increase the stability of this protein, probably a...

متن کامل

T Cell Recognition of the Dominant I-Ak–Restricted Hen Egg Lysozyme Epitope

Type-B T cells raised against the immunodominant peptide in hen egg lysozyme (HEL(48-62)) do not respond to whole lysozyme, and this has been thought to indicate that peptide can bind to l-A(k) in different conformations. Here we demonstrate that such T cells recognize a deamidated form of the HEL peptide and not the native peptide. The sequence of the HEL epitope facilitates rapid and spontane...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 1998